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This report presents a suary of the mathematical equations contained
in the N-STA2 missile similation propram. This propram, vritten for the

IBM 7090 digital computer, is designed to be a flexible, high speed computation

tool, useful for guidance system analysis, trajectory design, hardvare

evaluation, or post-flight analysis of any current or proposed missile system.

The simulation is generally complete and in most instances accuracy vill be
limited only by the accuracy of the input data.

Currently, work is proceeding vhich vill add the effects of missile
rotational inertia to the simulation.

The mathematical model !teed is fundamentally simple. The forces acting
on an assumed "point mass" are computed and divided by the mass of the missile
to obtain accelerations. These accelerations are added vectorially to that of
gravity and numerically integrated to obtain a velocity increment over a short
period of time. The velocity is numerically integrated to obtain a position
increment for the same period of time. As this process is repeated, the normal
output of the simulation is the time history of a trajectory.

Discortinuities in the trajectory, such as stagings, jettisons, etc., are
functions of input data and are treated logically by the program.

In addition to the quantitied necessary to the simulation, other descriptive

quantities are computed and printed.

For design and post-flight analysis p-oblems, automatic iterations (over
traject. -ie7 r pnrt. :- trajectories) may be made by the program. The iteration
techniq.,es allc any number cf input parameters to be found, with reference to
values for any number of fundamental or descriptive quantities. Maximization or
minimization may also be accomplished, with or without the presence of other

constraints.

Although numerical integration is at the heart of the program, no statement
of the integration techniques used is here made. The interested reader is referred
to any standard numerical analysis text for a discussion of Runge-Kutta and
Adams-Moulton integrstion techniques.



Derivatives of Equations of Motion

All of the basic computations are carried out in a Cartesian inertial system

having its origin at the center of the reference ellipsoid. The x and y axis pass

through the equator and the z axis is along thc polar axis. (Fig. 1)

Missile attitude determines the directions of the force vectors. Mutually

perpendicular unit vectors are defined such that points along the missile roll

axis, ~?lies in the pitc~h plane, and lies in the yaw plane. (Fig. 1)

Thrust and Mass Flow

are given by

F ýF icKF FO

M

where

Fo0 M0 may result from a table interrogation or from the Atlas Influence

Coefficient Engine Model.

Velocity relative to air mass is

k + ey V]

e yYae

z+ 0 7Vwz

where wind velocity components are

H -Wj xz - W , ,1- 2. 2] 1/2 + /
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WFd1,A INERTIALI COO I)IA7Ehi -SYSTE3M WITHI A~TTIJDE UNIT VECTORS

FIGURE I
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Derivatives of Equations of Notion

Thrust and Mass Flow (Cont'd)

v -- Y Z " - / + We X _ i

and =+

O= - K cosA (north component of wind)

We = -V 'p sKnAz (east component of wind)

Atmospheric quantities p (alugs/ft 3 ), C (ft/sec), T (deg Rankine) and P (Ibs/in2 )

are determined by approximation to the ARDC model of 1959 and are available to 2.3 million

feet of altitude.

Radius at sea level

R = (k z + 3(k z

where

2 2e -e(1 
-e

ellipticity (flattening)

, 2 RSL
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Derivatives of Equations of Notion

Thi-ast and Mass Floa (Cont'd)

ý%t:h rdtflber

N
m

Dynamic pressure

p t='a1
2

Aerodynsmic Drag

FgD =CD QS

where CD is obtained from a table, normally as a function of Nm

Center of Gravity Offset Force

ýCG (See Fig. 3) is rjbta-lned directly from a table or fCG is obtained from a

table and

ýCOG L - fCG

where ýCG is nose to c-nter of gravity distance along axis. The CG distances

in the q direction (ýCG) and ý direction ( CG) are tabular.

Center of gravity offset forces due to drag in q and ý directions are

D D 7Cj
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Derivatives of Equations of Notion

Center of Gravity Offset Force (Cont'd)

Center of gravity offset forces due to thrust mis•alipent in and directions

axe

F F (CG

F7 F .7  G

Aerodynamic Normal Force

Pitch and yaw components of angle of attack (a), angle between and V a a-e

determined from

tan • -a ,

(the approximate form is useiul for small values of a)

tana= ]

tan a = [tan2 aP + tan a

If the approximation is used, a and a are assumed equal, respectively, to tan a and
p y p

a
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Derivatives of Equations of Motion

Aerodynamic Normal Force (Cont'd)

Aerodynamic normal force coefficients in the pitch and yaw planes (CN CN y

may be presented as tabular functions of a, a and Nm. When CN and

CN are presentedN

P Pa

CNy C, a ay

or, a tabular normal force coefficient may be entered directly or as a function of

total angle of attack:

C = CNa a

tan aC __ __ (C )CN tan a N

tan a
CN tana N
y

Either c are obtained directly from a table or are obtained

from a table and

SL - gCp

..i-: hhe nose to center of pressure distances in the pitch and yaw planes

/ (Pip .
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Derivatives of Aknp-tinnj of ?bt-t4an

AeERqOd2rnmc Normal Force (Cant 'd)

Aerody'namic normml. forces In I7en directions wre

(or g is not, supplIed, (or )is used In both planes.CP4 CP~ fu C 1

Resultant Forces

- 7 F7  - F 7

F~ FC~~ F

Gravity

x I I t

G~m 6 ~Fr G Y 4[K
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Derivitives of Equations of Mbtion

Fr&ll changes ii z position.

AcCelerItio+

[li -lf3 (-3 +R;8 -1(f

an the and D ampcrictal bsod and crop-etionalle ael atiot efectos.med f

=allrchande B8 zr pstablrisondco.-etinlae atofcos

•" '- - " " - * '. . . . I

I I I I I I I I '1•-c



Derivativs of XquatL= of MOUM

Integrals for VelocitM, Position and Ness

V = V dt

r- JV dt

M. f dt

Turning Rate Options

Several computed turning rate options are available. In each option the rate

computed (w ) is limited to + 20 per integration cycle.

Zero lift flight (gravity turn)

Initially orient V to obtain a = 0

Va V

then

V= x +V +V
e a V

and compute pitch and yaw rates to maintain a constant attitude relationship

betueen and V
a

7. V1

Va

Yg . Va



Derivatives of' Equatiozis of Mot;oin

TuI'Rni RAte !Optiozis (Contld) I
where

1(w )2 + (V) In2

VW2 w

62+- ý / + 2Q Y+(e

isy (x + y)21/02 + %2

(x 2+ y) 2 ' )2(e~

+
2z z1

(xl +)

2 2

Jr (x + y)



DerivatiVes of ftqu-tio-c .3 OfP e~3

Turning Rate Options (Cont'd)

Roll to maintain pitch plane through center of Cartesian lirtiIl system

U. -- +' " L
r 71 -

Note that w)r is indeterminant during vertical rise.

Instantaneous turns about pitch, yaw and/or roll axes (Fig. 2).

E0 coop 0 sing

= sing + 70 COSgQ

fo0S

E coaG + EOsinG

0rr 0
7+

.1

~ ~o r - ~ hini

~= 7 Sin + C coa
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Derivatives of Equations of Motion

TurninRate Options (Cý.Atd) Tur,

Obtain a specified epsilon local (c )(see below) in a specified time (At)

from the current (I_

CI

I
Ci

(Opg
where t

-e Xbt4

fL is the angle between and r. (Fig. 6)

Obtain c imediately from

1 48t

~m~ COST~ - ,SinTi

0i

7?2 0o inl4! + 0 co

0!

Make €L =31., angle between r and V (Fig. 5) I
' 13

0)pg +t

where Bt iB the computing increment and

lV sin~L I~bI A
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Derivatives of quatimns of Noticn

Turning Rate Options (Cont'd)

Maintain a specified 6L

LNL

where e is the cL to be maintained.

;nt!ýW.1s for Attitude

Integrands for attitude are

-Al

Wy

Attitudes are

dt

at

vbere

w c or K Wt + W +
p pg P pc pd

Wy Y9 o yt +W YC +

or K W + W + W
r rt rt re rd
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Auxiliary CocputAtions

Descriptive Quantities

Thzee equations specify some descriptive quantities used for special purposes

arnd/or print out.

Angle between V' and r (Fig. 4)

aV&

Angie between r and V1"(Fig. 5)

Cosco 1  r-rI0i.8OB

Angle between r and • (Fig. 6)

€L=Cos 0- L 8°

Ll L

Azimuth from north of g projected on a plane normal to

,1 r x Y ]
A bod- [,,an,

]I~~~ II II I III II II II
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Iv V.
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Auxiliary Computations

Descri tive Quantities (Cont'd)

Normalized angular momentuM

RVSIB - - jVj I in 5

Ratio squared of velocity to circular orbital velocity

G

* Tota,1 energy

XlGYm ,,, •

2

Via viva energy

VV3N - 2 ENGY

Sensed velocity

VS f • G) dt,

Aerodynamic heating

taA j QV. dt

Geodetic latitude (R) and longitude (0)(Fig. 8)

'OD =tan-i -Z -7
Q ' J•'• l -221-) (x'+ y')

I- -Ixtn ~j-
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Auxiliary Computations

Descriptive .uantities (Cont'd) Dej

Circular range (R) between two positions on the spheroid, where (Qcl' 01)

(geocentric latitude, longitude) defines the first positionj (@%Z 0,) defines the

second, and r° is the radius of the spheroid, is given by

Z•= singl sin%2 + cos l cosi Z cos(02 - 01)

If

3 - .99998, then

S[(0cz c) + (2 01)2 cosj] e z/

where

I0 cz Qci and 02- , are 180P

If

I .99998., then

q-- coB- ., ,Mia

2S - ~kif 90~p~ 1800
R ~tots

where p is the clockwise difference of the azimuth from (PclGpi1  ) to (OC2' 02) and

a reference azimuth.
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Auxiliary Computations

Descriptive Quantities (Cont'd)

Azimuth from North of V projected on a plane normal to r is

AV tn - - cos(Q et + 0) - sin(P e t + 0)

I i osQ -sing c• (kos(pe t + 0) + k sn(Qe t. +)
Cartesian inertial to launch centered inertial coordinate transformation

px X9 Tl0 _qY x1  0 ? YO 7?Z0 x0" o Y 0 0 O 0"
Pyg = -Ax -• -• ,

S- - z 0 - - 0z
Pzg x Yo zo X -o zoo

v X9-q -qy YO -7?z0 i
o o 0 0 Z0

Vxg "X YO z Co 0 0yg-• -- •
Vzg oYo Zo

where 0 0 0 are the attItude vectors at launch.

M' ss Distances

Czo)ss range miss; distance (M ) and down range misc distance (Ma) components of

totae .,is, li,;tealce (Mt) at imTact (Fig. 9) are 8:ven by

E L, [singc CT n;CI + cOS9CL Ccos ci cos(o' i - 'L)



Misc Distances (Coat'd) i

if I
t: .99998,, then

LI - . - 'CL)2 + (0 OL)2 OCO5L

whore

I "Cl "CL I and10I ,
if

'L, '99M98,tlen

LI LI LI-

EL,14 sCL OnCM +CBCL csCM c(M L)

if

LiN -99998., then

Vee LM (O - QCL)2 + (OM - OL) 2  OCOB~ L 1  /

I2CH 'CLjI and Ij0,4 0L I wre 18o0

if

LK, - .99M9,- then

LM - 2 LLM 6LIN M; 0 IYLI
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Ifts. Distwameu (Cont'd) ~~tt~

cosaci awn(, - )

o*sinlI

co'CL milL,

oo.Qcm alzi(o - O j

Co"CL sn p

coaX' [l sintX '2'aL cJ

ill ,rco51k'L,.1
(LI + coo

'(d -o OY I + L
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Auxiliary Computations

Miss Distances (Cont'd)

M= rM'
C

Mt = [Me2 + Md2 I3

vbere 1', MI are central angles. Note that Mc is positive to the left vben
-2 d

looking dovn range.

Orbital and Impact Approximations

For an elliptical orbit or an impact trajectory,

e COSE = - -1GM

£ 
cos )

2  + (

Perigee -(I - E)-r

Apogee + e)-r

S.... '-e- c tIs ,JŽiipsoidal eccentricity and E ic the eccentric anomaly of the

...-....... iin
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Orbial ad Im act &roximations (Cont'd)

Period a Zx A /

Inclination -co05 (ainAV coSacM)

Vt ~j 1 -C0 1/2

Velocity at spogee i+

For an i~act trajectory RM1 L- i(i. e)

"£ cin XT - 1 a C c-m ) 2

~ (a sinET)(c cosal) -(e cosET)(C aim)

( a cos Ad ~ ( q Coal-) + (C~ ain L)(e a im )
(2(E -*

WIC 
[snE - 1 -1) kei~

LisL ~ the accaatj..L uw-IUJ ek t, impara poinlt.
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Auxiliary Co(utt tions

Orbital and Ipact Approximations (Cont'd)

Time of flight to impact and time of impact are

T ý12 XIT +csn - ainS

TI W t + TF

Inertial Cartesian components of impact point are

'=I kf + xg

ysg if + yg

vhere

;3/2 r

cos(Eý - E)-E COSE

1 - e co&E

Azimuth of i.pct is

iin(180 - Az

ASI )tn" cos(Zo -= X "7 16I Zi
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Auxiliry Con-tations

Orbital and 12act •pproximations (Cont'd)

where COs~c, sin(01 - L)
sin (180-A )

sin @eL coBT - sin Q.,
cos (180 - A ) ... .

if E ~IF S't CL ainC + Cos"%L ý Cos(OL 0)

e E. --. 99980, then -(C CL) + ( 'L) c°S2QcL]I/2

where!

I 9- CL ad - are :! 1800

Ift

E I -C .99998", T coa-E ,C- , 100

Circular range to impact is

- T if go, p II - 1800

CR1P =

Y; f 004 lPI go90

where p is the clockwise difference of impact azimuth and launch azimuth.



I"

Page 29

Orbital and izpact ~ N o•ations (Contd)

if. or it the .n.•,.i.e is in a hyperbolic orbit (i.e.

S-2), li orbital Lad impact quantities are net to zero.

N8EI (radius of spherical earth impact) may be input directly or as a

beigttt relative toteradu of h tage [R f(~ 01,"jEFHT) or as a

height relative to the uversge radius of the geoid (r ).

Velocity Losses and Rnulze Calculations

Oravity loss

t2

Vg a dti9 f t
where

t : time at beginning of stage

t time at end of stage

g lo.al gravity

P ngle between ir and geocentric local vertical (j)

Drae loss

t2 F

Misalignnent lossI

t1

t,
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.Velocity osses and IML.S. Calculations, (Coattd)

Averege specific Impulse per stage j
t !L

~~=T- !dt I
tR

I'T f rf dt

Ideal velocity per stage

Vt
V , ~ g o W 2 -

ois g the nominal value of grevity, rt1 in the weight of missile
at tL, and vWt2 is the veight of missile at t 2 .

Ii
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Rad.ur Site Coygutations

Distance from radar site to polar axis is

XER 400% [r.N cosQCR+(Nh+ cosoi]

where --

COS tl + (1.e)2, t
and fI

h= altitude of radar site above sea level I

gaR - geoidal sepavition at radar site

r - = sea level radius at radar site

50 longitude of radar, positive eastRI
Distance of radar site above equatorial plane is• '

zM - rSLR snCR + N + %) "n"DR

where

2
r1! ~Ing C (r COSOCR )(1-e) t"nDlR

Site Centered C.rtesian

Ellipsoid centered cartesiez inertial coordinates converted to ellipsoid-

fixed rectangular with origin at radar (Fig. 10) are given by the followinG:

X -X CODY +Ysin1 k

e
ze W z
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earth's surface

reference

SellipsoidI

normal, to

wmal ,* elipsoid

x I DR - -

|- er

TRACKER COORDINATES ON BEFERENCE ELLIPSOID

FIGURE 10

!
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Radar coaftralons

wbegeo

W Rx - )st- O R A

0 (x, x%)cO*QA + (% )j~

""Rl II6

U COS.
A%

V-ya

- :n +IO 0 -x
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.StG CeAtered Cartesian (Conti'd)

'e *XNQA +~Q -t'oQA

7

+* 5

ý e + l

A I
U& Co sPJ + Do

* iSi'2)L + Vco8qLR

cc

Spherical Radar

El:Lpsoid -fixed rectangulsr coordinates converted to spherical (radar)

coordi±ntea (Fig. 12)

Ru [uc+ v*+ -

I|
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Radar Conversions

8fetrical Bader (Cont'd)

A - si tan(1 (q), A*-2
+ V+) )

E -Cos -1 () O<(ECg

it - 1. (uAi + vi w)

R2(u2 + V2)1/2

Doppler Radar

Radar cross-shaped doppler rates computed from ellipsoid-fixed rectangular

coordinates (Fig. 13)

Lu [(5 - 83) + 21 (812 3 8) 1 ~.(~ 3)U ,[ ,+11 1

3 &3+ 2132 8 2.2
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I

L 20gler Radar (Cont'd) 
Radar Conversion5

[v 68 3 ) + (61 2 - 3 2) + .e 3B3)

V3 [3] + 0'3 + 5, + ~*8]~i18+.~+B3]j

[w~ ~ [(bl - 83) + (61 - 832) + -( -833)

+ 3 " . ÷+] -W-1i+8+ +

Arr

+ (b -4) + 1 .(622 - 842) + (823 6 43)]

+ f + 5 )~ v1+8+ 3 L i3

V411 4 + b4 + .854 2L+82 +52 2 22
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Rader Conversions

" -,,- e, "-d-e,, (Cont'd)

[w1 [52- 54 (,2 542) (523 53+ <, + ' + 5 + 5, +I' +
"+,, 4. + 4, 2 40+ + 20+I-+ 2, 2 2+ + °,2 ,

vhere
1 (u2 v2 v2)

(uu 1 + w + 1') 2 ±. + +
8 i , R2 1

Radar L-shaped doppler position and rates computed from ellipsoid-fixed

coordinates (Fig. 13) are given by the following. Constants are delineated on

Pae 52.

R U + v + W"

o. [R2 + K4 -uK • -qvL - %

+ av ]1/2

""2 R' + )ý'Z -% ""9 - !o-v

K16_+ 2"Kl__ +-•,2v.•. + 2,w" ,
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Hadar Colnver5 ions

~oppler Radar, (Cont'd)I

q 2 2K7+ vK18+ LnK1  j m

-~u + '(5 + '( K26 )
110  RO

ý,2iý + ý14+ i11x15 -p R0

4X7+ -K8+ iK2- q jo

Look Arurles
101

Missile look angles from radar site are ye:

BI1J = [(x-Xr) + (Y -r + Z r) ]
L ~~ (Y (Zrj

RLA2 tan-1 [ (x 'xr)ýx + (Y-Yr + (z - r)
ýx-X)qx+T- -Y)y+ 7z - rz7
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rba#A& AD lee ronto

wbare

Xr EX C~s(t + Or)

r er '0 7 r'e

'Z.

r 
tr

o z

If RLI = 90 0or 2700

LAY = .900 vith opposite sign of RIAZ

If I RIA21 <90 goo; U=-900

If JRI goo~;IAP - 910~

If RIAl j~ 90~ or 2700

tan RIAl
coestA]

LP=tean- [-(cosRIA2)(tanRIAl)J

IX?' = tan-1 -(h inRIA2)(tazRuAl)]

.6.6 KLULSL vz' y

LAP = E-

lAY = AY

If RLAl > 90'

If RtA2~ 4 90'

IAY I AY + 1800f
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If RL42 > -960

If IA2 < 00

LAP - -ILAPI
lAY - 97 + 1800

If RLA> 00

if BW <-i80 0

LAPAF

lAY Mf - IW~

If RW > W
JEWI

uy ay - 1w
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ItI
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RADAR LOK ANGIES
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Launch Azimuth Estimationt

1800,i o

[ K + KQ1 1- 2 >

G- coS 1  [sinQCL sinQC.P + caBQCL CO5GQC~cOB(T -L + QeTF,)

Iterate until I -1 < .0003 radians

-sin 1. [COSON sin(OT - OL+ Oe TFN]

VL =-(x 0 2 + 2)01/2 QJCs

0d 2y o f i a

vr -vad + KSTQ +' KSTl( N) + yKr2(Q N)2

TP X 2STO + K2ST1( vr) + K2 M (vr)

v L

ZL r
3Tp
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Initialization

Launch Azimuth Estimation (Cont'd)

K - 220.370

K- 2o.621

F.2 =0.

KMTO = 11137.6

KSTi - 199.w46

KST2 = -. 8.81W6

K2STO = 141.675

K2ST1 = .oo62625

K2ST2 = 0.

Launch Attitude

To achieve launch vertical the •, ?, • system is oriented such that
points along thex direction, f along the z direction, and in the negative

y direction. The i, • system is rotated through longitude of launch, astronomic

latitude of launch, a~d the supplement of launch azimuth. (Fig. 15)

cos(n4L •- Qet) + sns(-,L- Q•et)

sik-UCsNOt
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Initializetion

Position and Velocity Components at LaUnch (Cont'd)

Components of - andV eI

xo= cos(OL + Qe t) [rSLL COSQCL (hL + 9SL) cCsIL]

yo = 5ixn(O + fQe t) [r 8L csOSCL (b + gSL) coGODL]

'o wr8 LLsinQC + (h.L + 8L) inDL

~:o

o --O •

0

The simulation may be started at an arbitrary point in space vith o

and no specified.

If the position and velocity components are Clven in a radar coordinate

syltein, the fol'oving conversions axe made:

I-

I I I II II I I I I I II



! °I4w4

surface L normal to Ale

II
g e o i d n o m l C

LAUNCH COORDIrNTES ON IEFMIC ELLIPSOID
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FIUEI



Radar to Cartesian Coordinate Conversion

Ellisoid - Spberical Coordinates and Doppler Rates to Fixed Rectsaeul_ r

u = R sinE sinA

v = R sinE cosA

w = R cosE

0 vK K4 u 1 v 2 w 3 ] 1/21

Ro= R2 + K8 - uK1 - vK6 - wK 7 1

R2  R2 + XK2 - ,Kg - vK 1o - wK] 1/21

X16 + 2(-K,13 + vK114 + ,K)1 5

Ro + R1

q o2 + 2(UK1 7 + vK18 + Tr1 )
R- +r-

0

R -R 4 + q(ý - )

D -K 23(u-K2 4) + '(,-"z,) + I(w-26)



Ba~dar to Cartesian Cvardinat~e Conversion (Cont'd)

R o Rok

0~ ++ %

D [K,4(U-K,4)-K'13(v-K,5)] + RDO [Kl7(V.KZ)S 8(u-K214)]+

jDoppler radar coefficients (see Fig. 13).

JK 3 2(vo)

IK 14 = (u 0) + -v0) d0 2

"5K -2Zul

Iul + (vi)2 + (l)2 md
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Initialization

Radar to Cartesian Coordinate Conversion (Cont'd)

K9  2(u2)

klO 2;(v2)

K 1 = 2(w2)

X2 = (U2)z 2+ (v 2 ) + (v2)2= d2

K13 = ul - uo

K1 4 = vI - vo

E15 = I - 0

X16 d 0o 2 d12

K -z -d

K V2i -%

K13 = v 2 - 0

Kl = w2 - vo

K20 = do 2 - d22

K 21 K KI3KI8 - KI7•I4
K22 =K K~sI -K Klg

K 2 K15K17 - 19K13

K23 1K4KI9 - K1 8K1 5

K2 4 = uK 4=v
K25 = vo

K2,6 - w
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InltliLatiOn

Radar to Cartesian Coordinate Conversion (Cont'd)

Spherical coordinates and rates to ellipsoid-fixed rectangular coordinates

u R sinE sinA

v R sinE cosA

w = R COSE
I I

u sinE sinA + RE cosE sinA + LA sinE cosA

v=IsinE cosA + RE coEcosA -Ri simE sinAIIS=f osE& - RE sine

Site Fixed Cartesian Coordinate and Rate Transformation to Inertial Sy.tem

Ss iE R 

U

L JLo oJ ,j

H I
0 0 1 V•

-- a m •°

I~ ~ ~~ ~cs' IInA I I I IIII
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Inltial zation

Radar to Cartesisn Coordinate Conversion (Cont'd)

li! I= DS:DR 0 c0s9DR a Xer

y e 01 0 1

L-COSDR 0 sinGT Zer

F oo., t -n *DR [

0 0 1 0 0
L LSo b 0 CSD J L 'e"

S[eI(Qe t + ) c(% t + B0 R) 0]

r i o t +j COO° tLo0
L0 0 1] [ez 0

Attitude from Angles of Attack

The following conversions are made to initialize the attitude of tbe missile

when end at are known:



Attitude from Angaes of Attack (Cont'd)

ly

V ~V +C i-xi
a e

Lo
v %

+

-in 11/s2p

r

0

cosay cosci ;apA
0 0 0

10 81lC p Oc,'
10~

-i. -x

~- no



Pogc 5r

Initialization

Tie Doim

Derivatives of equations of motion to maintain vertical attitude during

Icaunch hold down are computed from

r rx

V VJ[e"•.. c•,••-. 0
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AIFENI)IX A

Snbol Definitions

A Semi-major axis of reference ellipsoid.

AL Azimuth of launch, measured clockwise from north.

AZ Wind azimuth, measured clockwise from north.
V

Semi-minor axis of reference ellipsoid.

C Speed of sotuid.

CD Tabular drag coefficient.DB

A-B
e Ellipticity of reference ellipsoid = -

A

Eccentricity --, where C is the distawce from the center
A

of the ellipsoid to a focus along the major axis.

G Gravitational Acceleration.

Longitude.

A Astronomic latitude, angle between the equitorial plane and

the local direction of gravity.

0 Geocentric latitude, angle between the equatorial plane and •.

C
D Geodetic latitude, angle between the equatorial plane and the

nnrnal to the reference ellipsoid.

LF Multiplier for tabular thrust Fo.

K Wind perturbation multiplier.

K•! •ktMltiplier for tabular mass flow rate •o

K MWltiplier for tabular pitch rate.

kK ilt p ler for tabulam roll rate.

K Multiplier for tabular yaw rate.
OA)
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JU'PELNDIX A (Cont'd)

M Mass of missile.

M I Reference initial mass for ablation computation.

N Mach number.m

P Atmospheric pressure.

Q Dyiamic pressure.

p Atmospheric density.

r Missile pcosition vector whose components are x,y,z.

r 0Avcrage radius of geoid (spherical approximation).

S Missile cross-sectional area.

T Atmospheric temperature.

0 Longitude.

V Tabular wind velocity.w

kki Components of missile's velocity vector V.

Q e Reference ellipsoid's rotation rate.

(, ,WW Angular rotational rate about respectively pitch, yaw andp y r

roll axes.

S ca , Respectively pitch, yaw and roll rates from the guidance

program.

ell ;w Respetiv pit.vh, ya and roll dr!itsn
-p" Yd' --rd
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APPENDIX B

Iteration

Two general schemes of iteration are used. The first, called (for lack of a

better name) "paired function", requires that each parameter to be determined

be paired with a function to be constrained. The second form of iteration,

termed "matrix", does not require pairing of the functions and parameters but

docs not allow minimizing or maximizing of functions.

In either type of iteration, control of the portions of a trajectory over which

iteration is to take place is provided. The control system allows "nesting" of
"paired function" sets within other "paired function" or "matrix" sets. This

capability allows combination of the strong points of the two general schemes

according to the needs of the individual problem.

Paired Functions

After an initial t--o14 ctory is integrated, a perturbation is added to the para-

meter in questiol. ai. " t.,ther trajectory is integrated. Inverse La Grangian

interpolation or extr 'j .,t'1n is then used to estimate a new valpe for the

parameter. (The desiil v wCiue of the function is used as argument.) The traj-

ectory is again integrated and the results enable the use of a higher order

polynomial in the interpolation or extrapolation procedure. The process is used

repeatedly until convergence. The polynomial order may be limited by input, or

in any case at order 5.

If minimization or maximization is called for, a second perturbation is added to

the parameter and a third trajectory is produced. La Grangian interpolation is

then used in a "step-and-bisect" iterative procedure which determines minimum or

maximum for the polynomial fitting the available points. If no minimum or maxi-

mum is available, another perturbation is added to the parameter. In either case

another trajectory is produced and the new point is used to enable a higher order

polynomial to be used in the "step-and-bisect" solution. Again the La Grangian

polynomial order may be limited by input, or at order 5.
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Paired Functions (cont'd)

The 'btep-and-bisect" process is said to converge vhen the improvement in the
function is less than one half the (input) accuracy requirement. The function

maximization (minimization) is complete vhen the difference between output of
J the "step-and-bisect" procedure end the previous value of the function is less

then the (input) accuracy requirement.

MATRIX Iteration

The Newton-Raphson method for iterative linear differential correction may be
stated in its matrix form: 

A

6 X2 -Y

Vo

(i) -A - •'Ax

Xl1
I'~ YmX

*.. .] _ • x n _

WherijAY! cunsists of the differences from desire4 conditicns, and[AX]
is the suggestccd chcngce to the peremeters in question.

The 1,vti.l C-rivative elements Y may be replaced by their finite difference

cquivc3.]ntG, YiL . In the N-SAGA IT 'r, "tm, in order to enable the use oi' the
Ax.

Generalized Secant Method, the resultant equation is re-written as two equntlxons in

thL cuioalcnt form:

AYYI, 1& 1 , 2

LY2
Ax2,1

n* A ,nj
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(3) aX - AXL 0. Px
0.AA

X

n-4

Where A Y indicates the difference in Yi produced by a change X X in X

The elements /\Yi, j are obtained by repeatedly integrating the trajectory with c

each of the parameters in question perturbed in its turn. The elements aX j of

the diagonal matrix (3), are the perturbation values. The elements of[n Y1 and

Ea Y Jare divided by normualizing elements N i (which rixe input quafltities) in

order to scale, or establish dimensional homogeneity.

The first equation is solved for LP in a "least squares"* sense, which allows

the general case, unn. The multiplication implied in the second equation is then

performed, yielding the set LAX] , the elements of which are added to the appro-

priate parameters.

After a solution of the above sort is accomplished, and the trajectory representing

the suggested parameters integrated and found to be still unconverged, the Generalized

Secant Method may be utilized to improve the convergence without integrating the num-

ber of trajectories (n), necessary to recompute the matrices for equations (2) and

(3). In this method a new column, consisting of the negative of the normalized

(scaled) deviations from conditions at the previous nominal trajectory integration,

is appended to each matrix as the first column, and is added to each of the remaining

columns, producing matrices with one more column than the previous matrices.

II/Al~ Y1 , -AY1,o . ... I-
(4) AY P

L KnYmn AYm,o L

S', .hF, Gcncrul LinetL" Equation Solver by D. D. Morrison, Sept. 24F, 1959 (CDRC
: mt,•tver sub:i, •tlne).
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-6XL 0X 1,- Ax1,o e

(5) X x p

aS 0 °X- -AIn , n,°

The proccse ma) be u~ed repeatedly, each time defining the previous trajectory to

"le '":he i.ýrevious nominl trajectory.

The laut column may be deleted after any number of additional colmns have been

accumulat.•d.

A satisfactory rationale for deletion or non-deletion of the last column is not

presently available, but experience indicates that the last column should be kept

if the number of functions is approximately equal to the number of parameters (m=n),

and dele;ed when the number of functions is markedly greater than the number of

pcroireters (m)en). Tests with m and n initially equal to 3 have shown a 20% increase

in efficiency when the matrices are allowed to expand indefinitely.

In part:Lcular, when inaccuracies due to system non-linearities (round-off error

accumulations, integration truncation error, staging condition annomalies, etc.)

a:e or Ihc order of the iteration convergence accuracies required, it has been found

necessý.ry to llow the matrices to expcnd in order to gain convergence.

An ad ki~vul advantage of the Generalized Secant Method is that perturbation delta

magnitudeo .' mc a less dominant role in convergence efficiency. In many cases

convergercQ •; worsened by a Newton-Raphson solution because of erroneous partial

derivative information due to improper perturbation sizes. In such cases it is not

uncommon to find that the Generalized Secant Method can proceed to convergence.

The G;•ner&llzed Secant Method is used repeatedly, until the gain in one step is less

"than I input quantity SCGN. (The gain is measured. as the ratio of the summations

sqcJt.res of the elements nf the normalized error vecto{/Y] , for two successive

"•v"• unt• ion px.ses. ) Thus, if any solution pass (whether '.,he solution comes

Best Available Copy
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from Nevton-Raphson or Generalized Secant Me!thod) is not materially better than the

previous solution or nominal pass, the program reccmputes the matrices by perturbs-

tion methods. Note. that if SCON is a very large number, the Generalized Secant

Method is not attempted.

Zigenvalues associated with the solution of equation (2) or (I),are printed folloving

each evaluation. These Zigenvalues are of use only if it is understood that they are

for the matrix transpose multiplied by the matrix, and it should be remembered that the

elements are scaled. The ratio of the largest Zigenvalue to the smallest (knovn as the

condition number) is sometimes a clue to the degree of linear dependence in the matrix.

A possibly confusing issue is that the overall perturbation in the column associated

-ith a particular Zigenvalue also affects the condition number. Zero Bigenvalues

should not be found for a Nevton-Rauphson solution, but are often found for a Generalized

Secant Method solution. In fact, usually only (n) Eigenvalues are large enough to have

any effect, even though the matrix has been allowed to expand considerably larger than

the original (n) columns.

In any ccse, the Eigenvalues are associated with input parameters in reverse order to

their printing. That is, the last Eigenvalue is associated with the first iteration

variable.

Smatrix iteration is determined to have converged on either of tw criteria.

1. The error in each of the functions is less than the corresponding accuracy

requirement.

2. The change in the error (for each of the functions vhich fails the first

criterion) is leso thnn one hclf the corresponding accuracy requirement.

The change is monsured from the previous solution or the ncmintl trajectory.
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